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Figureб 6.8б (b)

Background:
Frequency Modulation

Applications of FM in communications systems date back to the nineteenth century. The theory behind FM
of radioband frequencies (in the MHz range) was established early in the twentieth century (Carson 1922; van
der Pol 1930; Black 1953). These studies are worth reading today, particularly Black's book, which walks the
reader through a well-planned tour of the hills and dales of waveform modulation.

John Chowning at Stanford University was the first to explore systematically the musical potential of digital
FM synthesis (Chowning 1973). Prior
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to this, most digital sound had been produced by fixed-waveform, fixed-spectrum techniques. Time-varying
additive and subtractive synthesis were rare and costly from a computational standpoint. Since most digital
synthesis work had to be done on multiple-user computers, there was a strong incentive to develop more
efficient techniques, with the emphasis on time-varying spectra. This motivation was explained by Chowning
as follows:

In natural sounds the frequency components of the spectrum are dynamic, or time variant. The energy of the components
often evolves in complicated ways; in particular during the attack and decay portions of the sound.
(Chowning 1973)

Hence, Chowning sought a way to generate synthetic sounds that had the animated spectra characteristic of
natural sounds. The breakthrough came when he was experimenting with extreme vibrato techniques, where
the vibrato becomes so fast it effects the timbre of the signal:

I found that with two simple sinusoids I could generate a whole range of complex sounds which done by other means
demanded much more powerful and extensive tools. If you want to have a sound that has, say 50 harmonics, you have to
have 50 oscillators. And I was using two oscillators to get something that was very similar.
(Chowning 1987)

After careful experiments to explore the potential of the technique, Chowning developed a patent on an
implementation of FM. In 1975 the Japanese firm Nippon Gakki (Yamaha) obtained a license to apply this
patent in their products. After several years of development and extensions to the basic technique (described
later), Yahama introduced the expensive GS1 digital synthesizer ($16,000, housed in a wooden pianolike
case) in 1980. But it was the introduction of the highly successful DX7 synthesizer ($2000) in the fall of 1983
that made FM synonymous with digital synthesis to hundreds of thousands of musicians.

Frequency Modulation and Phase Modulation

FM and the closely related technique called phase modulation (PM) represent two virtually identical cases of
the same type of angle modulation (Black 1953, pp. 28б 30). The amplitudes of the partials generated by the
two methods exhibit slight differences, but in musical practice there is no great distinction between PM and
FM, particularly in the case of time-varying spectra. Hence we will not discuss PM further in this book. (A
variation called phase distortion is discussed later in this chapter, however.) For details on the distinction
between PM and FM, see Bate (1990), Holm (1992), and Beauchamp (1992).
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Simple FM

In the basic frequency modulation technique (referred to as simple FM or Chowning FM), a carrier oscillator
is modulated in frequency by a modulator oscillator (Chowning 1973, 1975). Figure 6.9 diagrams a simple
FM instrument. (A slight discrepancy exists between the amplitudes of the spectrum components emitted by
the instrument shown in figure 6.9 and the spectra described by the classic FM formula, presented in a
moment. Overall these differences are minor. For a summary see Holm 1992 and Beauchamp 1992.)

Looking at the spectrum shown in figure 6.10 we can immediately see the difference between FM and the
RM and AM methods presented earlier. Instead of just one sum and one difference sideband, FM of two
sinusoids generates an series of sidebands around a carrier frequency C. Each sideband spreads out at a
distance equal to a multiple of the modulating frequency M. Later we investigate the number of sidebands;
suffice it to say

Figureб 6.9
Aб simpleб FMб instrument.б Theб bipolarб outputб ofб the

modulatingб oscillatorб isб addedб toб theб fundamentalб carrier
frequency,б causingб itб toб varyб upб andб down.б Theб amplitude
ofб theб modulatorб determinesб theб amountб ofб modulation,б or

theб frequencyб deviationб fromб theб fundamentalб carrier
frequency.
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Figureб 6.10
FMб spectrumб showingб sidebandsб equallyб spacedб aroundб theб carrierб Cб atб multiplesб of

theб modulatorб M.

now that the number of sidebands generated depends on the amount of modulation applied to the carrier.

C:M Ratio

The position of the frequency
components generated by FM
depends on the ratio of the
carrier frequency to the
modulating frequency. This is
called the C:M ratio. When
C:M is a simple integer ratio,
such as 4:1 (as in the case of
two signals at 800 and 200 Hz),
FM generates harmonic spectra,
that is, sidebands that are
integer multiples of the carrier
and modulating frequencies:

C = 800 Hz (carrier)

C + M = 1000 Hz (sum)

C + (2 ц≈ M) = 1200 Hz (sum)

C + (3 ц≈ M) = 1400 Hz, etc. (sum)

C б  M = 600 Hz (difference)

C б  (2 ц≈ M) = 400 Hz (difference)

C б  (3 ц≈ M) = 200 Hz, etc. (difference)
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When C:M is not a simple integer ratio, such as 8:2.1 (as in the case of two signals at 800 and 210 Hz), FM
generates inharmonic spectra (noninteger multiples of the carrier and modulator):

C = 800 Hz (carrier)

C + M = 1010 Hz (sum)

C + (2 ц≈ M) = 1120 Hz (sum)

C + (3 ц≈ M) = 1230 Hz, etc. (sum)

C б  M = 590 Hz (difference)

C б  (2 ц≈ M) = 380 Hz (difference)

C б  (3 ц≈ M) = 170 Hz, etc. (difference)

Modulation Index and Bandwidth

The bandwidth of the FM spectrum (the number of sidebands) is controlled by the modulation index or index
of modulation I. I is defined mathematically according to the following relation:

I = D/M

where D is the amount of frequency deviation (in Hz) from the carrier frequency. Hence, D is a way of
expressing the depth or amount of the modulation. So if D is 100 Hz and the modulator M is 100 Hz, then the
index of modulation is 1.0.

Figure 6.11 plots the effects of increasing the modulation index. When I = 0 (figure 6.11a) the frequency
deviation is zero so there is no modulation. When I is greater than zero, sideband frequencies occur above
and below the carrier C at intervals of the modulator M. As I increases, so does the number of sidebands.
Notice in that as I increases, energy is ''stolen" from the carrier and distributed among the increasing number
of sidebands.

As a rule of thumb, the number of significant sideband pairs (those that are more than 1/100th the amplitude
of the carrier) is approximately I + 1 (De Poli 1983). The total bandwidth is approximately equal to twice the
sum of the frequency deviation D and the modulating frequency M (Chowning 1973). In formal terms:

FM bandwidth ~ 2 ц≈ (D + M).

Because the bandwidth increases as the index of moduation increases, FM can simulate an important property
of instrumental tones. Namely, as the
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Figureб 6.11
FMб spectrumб withб increasingб modulationб index.б (a)б Carrier.

(b)б (e)б Carrierб plusб sidebandsб forб Iб =б 0б (seeб a)б toб 4б (seeб e).
Theб sidebandsб areб spacedб atб intervalsб ofб theб modulating
frequencyб Mб andб areб symmetricalб aboutб theб carrierб C.

(Afterб Chowningб 1973.)

amplitude increases, so does the bandwidth. This is typical of many instruments, such as strings, horns, and
drums, and is realized in FM by using similar envelope shapes for both the carrier amplitude and index of
modulation.

Reflected Sidebands

For certain values of the carrier and modulator frequencies and I, extreme sidebands reflect out of the upper
and lower ends of the spectrum, causing audible side effects. An upper partial that is beyond the Nyquist
frequency (half the sampling rate) "folds over" (aliases) and reflects back into the lower portion of the
spectrum. (Chapter 1 describes foldover in more detail.)

When the lower sidebands extend below 0 Hz, they reflect back into the spectrum in 180-degree
phase-inverted form. By "phase inverted" we mean that the waveform flips over the x-axis, so that the
positive part of a sine wave becomes negative and the negative part becomes positive. Phase-
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Figureб 6.12
Spectralб plotб showingб theб effectsб ofб reflectedб low-б frequency

sidebands.б Theб C:Mб ratioб isб б andб theб modulationб index
isб 5.б Theб downwardб linesб indicateб phase-invertedб reflected

components.
(Afterб Chowningб 1973.)

inverted partials are drawn as lines extending downward, as in figure 6.12. In general, negative frequency
components add richness to the lower-frequency portion of the spectrum, but if negative components overlap
exactly with positive components, they can cancel out each other.

The FM Formula

When the carrier and the modulator are both sine waves, the formula for a frequency modulated signal FM at
time t is as follows:

FM
t
 = A ц≈ sin(C

t
 + [I ц≈ sin(M

t
)])

where A is the peak amplitude of the carrier, C
t
 = 2π ц≈ C, M

t
 = 2π ц≈ M, and I is the index of modulation.

As this formula shows, simple FM is quite efficient, requiring just two multiplies, an add, and two table
lookups. The table lookups reference sine waves stored in memory.

Bessel Functions

The amplitudes of the individual sideband components vary according to a class of mathematical functions
called Bessel functions of the first kind and the nth order J

n
(I), where the argument to the function is the

modulation index I. The FM equation just given can be reexpressed in an equivalent representation (adapted
from De Poli 1983) that incorporates the Bessel function terms directly:
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Each n is an individual partial. So to calculate the amplitude of, say, the third partial, we multiply the third
Bessel function at point I, that is, J

3
 (I), times two sine waves on either side of the carrier frequency.

Odd-order lower-side frequency components are phase inverted.

Figure 6.13 depicts the Bessel functions in a three-dimensional representation for n = 1 to 15, with a
modulation index range of 0 to 20. The vertical plane (an undulating surface) shows how the amplitudes of
the sidebands vary as the modulation index changes. The figure shows that when the number of sidebands is
low (at the "back" of the display) the amplitude variation is quite striking. As the number of sidebands
increases (shown toward the "front" of the display), the amplitude variations in them (ripples) are small.

From a musical standpoint, the important property is that each Bessel function undulates like a kind of
damped sinusoidwide variations for low I and less variation for high I. Simple FM is audibly marked by this
indulation as one sweeps the modulation index. Notice also that the J

n
 (I) for different values of n cross zero

at different values of I. So as the modulation index I sweeps, sidebands drop in and out in a quasi-random
fashion.

A convenient feature of FM is that the maximum amplitude and signal power do not have to vary with I. This
means that as I increases or decreases, the overall amplitude of the tone does not vary wildly. Musically, this
means that one can manipulate the amplitude and the index independently by using separate envelopes
without worrying about how the value of I will affect the overall amplitude. As we see later in this chapter,
this is not the case with some other synthesis techniques, notably waveshaping and the discrete summation
formulas. These techniques require amplitude normalization since the modulation can drastically affect the
output amplitude.

Digital Implementation of FM

Figure 6.9 showed a simple FM instrument in which the depth of modulation is controlled by a constant
frequency deviation. But since the bandwidth is directly related to the modulation index and only indirectly to
the frequency deviation, it is usually more convenient to specify an FM sound directly in terms of a
modulation index. In this case, the instrument needs to be modified to carry out additional calculation
according to the following relation:

D = I ц≈ M.
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Figureб 6.13
Three-dimensionalб graphб ofб theб Besselб functionsб 1б toб 15б plottedб (plottedб backб toб front)б asб aб functionб ofб modulationб indexб I
(plottedб fromб leftб toб right)б showingб theб numberб ofб sidebandsб generatedб (afterб Chowningб 1973).б Linesб A,б B,б andб Cб showб the

pointsб atб whichб theб amplitudeб fallsб offб byб б 40,б б 60,б andб б 80б dB,б respectively.б Lineб Dб indicatesб theб cutoffб pointб for
"perceptuallyб significant"б sidebands.б Eб isб theб maximumб amplitudeб forб eachб order.б Linesб Fб throughб Kб showб theб zeroб crossings

ofб theб functionsб and,б therefore,б valuesб ofб theб indexб thatб produceб aб nullб orб zeroб amplitudeб forб variousб sideб frequencies.
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Figureб 6.14
Simpleб FMб instrumentб withб envelopesб forб amplitudeб andб frequency.
Thisб instrumentб alsoб translatesб aб user-б specifiedб modulationб index

envelopeб intoб aб frequencyб deviationб parameter.

A musician usually wants dynamic control of the overall amplitude as well as the modulation index. Figure
6.14 provides these envelopes. In Chowning's original paper (1973) he described a variation of this
instrument with a modulation index that varies between two values I1 and I2 according to an envelope. (see
Maillard 1976 for another implementation.)

Applications of Simple FM

A straightforward application of simple FM is generating brasslike tones. This family of sounds have a sharp
attack on both the amplitude and index envelopes, and maintain a C:M ratio of 1. The modulation index
should vary between 0 and 7.
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When the C:M ratio is 1:2, odd harmonics are generated, making possible a crude clarinet simulation. An
irrational C:M ratio like

yields an inharmonic complex that can simulate percussive and bell-like sounds (Moorer 1977).

Besides simulations of instrumental tones, another way to compose with FM is to take advantage of its
"unnatural" properties and the uniquely synthetic spectra it generates. This is the approach taken by
composers James Dashow and Barry Truax. Dashow uses FM to "harmonize" (in an extended sense of the
word "harmony") pitch dyads (Dashow 1980, 1987; Roads 1985c). Truax systematically mapped out the
spectral ''families" made possible by various C:M ratios (Truax 1977). For example, certain C:M ratios
generate harmonic spectra, while others generate combinations of harmonic and inharmonic spectra. Each
C:M ratio is a member of a family of ratios that produce the same spectrum and which vary only in the
position of the carrier around which spectral energy is centered. By carefully choosing carrier and modulating
frequencies a composer can generate a progression of related timbres with the same set of sidebands.

Another approach to composition with FM is to set a constant C or M and generate a set of related timbres
with different C:M ratios.

Exponential FM

In the usual digital implementation of FM, the sidebands are equally spaced around the carrier frequency. We
call this linear FM. In FM on some analog synthesizers, however, the spacing of sidebands is asymmetrical
around the carrier, creating a different type of sound altogether. We call this exponential FM. This section
explains the difference between these two implementations of FM.

Most analog synthesizers let a voltage-controlled oscillator (VCO) be frequency modulated by another
oscillator. However, in order to allow equal-tempered keyboard control of the VCO, the VCO responds to a
given voltage in a frequency-dependent way. In particular, a typical VCO responds to a one-volt-per-octave
protocol, corresponding to the voltage/octave protocol of analog keyboards. In such a system, for example,
the pitch A880 Hz is obtained by applying one more volt to the control input of the VCO than that needed to
obtain A440.

In the case of FM, a modulating signal that varies between б 1 volt and + 1 volt causes a carrier oscillator set
to A440 to vary between A220 and
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A880. This means that it modulates 220 Hz downward but 440 Hz upwardan asymmetrical modulation. The
average center frequency of the carrier changes, which usually means that the perceived center pitch is
detuned by a significant interval. This detuning is caused by the modulation index, which means that the
bandwidth and the center frequency are linked. From a musical standpoint, this linkage is not ideal. We want
to be able to increase the modulation index without shifting the center frequency. See Hutchins (1975) for an
analysis of exponential FM.

In digital modulation the sidebands are spaced equally around the carrier; hence the term linear FM. As the
modulation index increases, the center frequency remains the same. All digital FM is linear, and at least one
manufacturer, Serge Modular, makes a linear FM analog oscillator module.

Analysis and FM

Since FM techniques can create many different families of spectra, it might be useful to have an
analysis/resynthesis procedure linked to FM, similar to those used with additive and subtractive techniques.
Such a procedure could take an existing sound and translate it into parameter values for an FM instrument.
By plugging those values into the instrument, we could hear an approximation of that sound via FM
synthesis. The general name for this type of procedure is parameter estimation (see chapter 13). Various
attempts have been made to try to approximate a given steady-state spectrum automatically using FM (Justice
1979; Risberg 1982). The problem of estimating the FM parameters for complex evolving sounds is difficult
(Kronland-Martinet and Grossmann 1991; Horner, Beauchamp, and Haken 1992).

As the power of digital hardware has increased, some of the motivation for estimating FM parameters has
diminished. FM synthesis was originally proposed as a computationally efficient method, but now more
powerful synthesis methods (such as additive synthesis) are no longer so difficult. Only a certain class of
sounds are well modeled as modulations. Additive synthesis and physical models (see chapter 7) may be
more appropriate models of traditional instruments.

Multiple-Carrier FM

By multiple-carrier frequency modulation (MC FM), we mean an FM instrument in which one oscillator
simultaneously modulates two or more carrier oscillators. The output of the carriers sum to a composite
waveform that
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Figureб 6.15
Aб spectrumб withб threeб formantб regionsб createdб withб aб three-

carrierб FMб instrument.

superposes the modulated spectra. Multiple carriers can create formant regions (peaks) in the spectrum, as
shown in figure 6.15. The presence of formant regions is characteristic of the spectrum of the human voice
and most traditional instruments. Another justification for separate carrier systems is to set different decay
times for each formant region. This is useful in simulating brasslike tones where the upper partials decay
more rapidly than the lower partials.

Figure 6.16 shows a triple-carrier FM instrument. In order to indicate clearly the multiple-carrier structure,
the figure omits envelope controls and waveform tables. The amplitudes of the carriers are independent.
When the Carrier 2 and Carrier 3 amplitudes are some fraction of Carrier 1, the instrument generates
formant regions around the frequencies of the second and third carriers.

The equation for a multiple-carrier FM waveform at time t is simply the addition of n simple FM equations:

where A is an amplitude constant, 0 < A ℜ≤ 1.0,

w1 is the weighting of Carrier 1,

wn is the weighting of Carrier n,

C1 is the fundamental pitch = 2π ц≈ carrier frequency 1 (in Hz),

Cn is the formant frequency = 2π ц≈ carrier frequency n (in Hz), where Cn is an integer multiple of C1,

M is modulating frequency, usually set to be equal to C1 (Chowning 1989),
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Figureб 6.16
Triple-carrierб FMб instrumentб drivenб byб aб single

modulatingб oscillatorб (OSCб MOD).

I1 is the modulation index of C1

In is the modulation index of Cn

The exponents w1 and wn determine how the relative contribution of the carriers vary with the overall
amplitude A.

Musical Applications of MC FM

Documented applications of MC FM strive to simulate the sounds of traditional instrument tones. With MC
FMor any synthesis technique, for that matterthe secret of realistic simulation is attention to detail in all
aspects of the soundamplitude, frequency, spectral envelopes, vibrato, and musical context.

A straightforward application of MC FM is in the synthesis of trumpet-like tones. Risset and Mathews's
(1969) analysis of trumpet-like tones

б 
< previous page page_238 next page >

cover

252



< previous page page_239 next page >

Page 239

showed a nearly harmonic spectrum, a 20б 25 ms rise time of the amplitude envelope (with high partials
building up more slowly), a small quasi-random frequency fluctuation, and a formant peak in the region of
1500 Hz. Morrill (1977) developed both single-carrier and double-carrier FM instruments for brass tone
synthesis based on these data. A double-carrier instrument sounds more realistic, since each carrier produces
frequencies for different parts of the spectrum. In particular, C1 generates the fundamental and the first five
to seven partials, while C2 is set at 1500 Hz, the main formant region of the trumpet. Each carrier has its own
amplitude envelope for adjusting the balance between the two carrier systems in the composite spectrum. For
example, in loud trumpet tones, the upper partials standout.

Chowning (1980, 1989) applied the MC FM technique to the synthesis of vowel sounds sung by a soprano
and by a low bass voice. He determined that a combination of periodic and random vibrato must be applied to
all frequency parameters for realistic simulation of the vocal tones. "Without vibrato the synthesized tones are
unnatural sounding" (Chowning 1989, p. 62). A quasi-periodic vibrato makes the frequencies "fuse" into a
vocal-like tone. In Chowning's simulations, the vibrato percent deviation V is defined by the relation

V = 0.2 ц≈ log(pitch).

Hence for a pitch of 440 Hz, V
is about 1.2 percent or 5.3 Hz in
depth. The frequency of the
vibrato ranges from 5.0 to 6.5
Hz according to the
fundamental frequency range of
the pitches F3 to F6.

Multiple-Modulator FM

In multiple-modulator frequency modulation (MM FM) more than one oscillator modulates a single carrier
oscillator. Two basic configurations are possible: parallel and series (figure 6.17). MM FM is easiest to
understand when the number of modulators is limited to two and their waveforms are sinusoidal.

Parallel MM FM

In parallel MM FM, two sine waves simultaneously modulate a single carrier sine wave. The modulation
generates sidebands at frequencies of the form:

C б╠ (i ц≈ M1) б╠ (k ц≈ M2)
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Figureб 6.17
MMб FMб instruments.б (a)б Parallelб MMб FM.б (b)б Seriesб MMб FM.

where i and k are integers and M1 and M2 are the modulating frequencies. In parallel MM FM, it is as though
each of the sidebands produced by one of the modulators is modulated as a carrier by the other modulator.
The explosion in the number of partials is clear in figure 6.18, which lists both the primary and secondary
modulation products.

The wave equation of the parallel double-modulator FM signal at time t is as follows:

PMMFM
t
 = A ц≈ sin{C

t
 + [I1 ц≈ sin(M1

t
)] + [I2 ц≈ sin(M2

t
)]}.

For mathematical descriptions of the spectra produced by this class of techniques, see Schottstaedt (1977) and
LeBrun (1977).
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Figureб 6.18
Thisб diagramб depictsб theб explosionб inб theб numberб ofб partialsб producedб byб parallelб MMб FM.б Eachб ofб the

componentsб emittedб byб theб modulationб ofб theб Carrierб byб Modulatorб 1б isб thenб modulatedб byб Modulator
2,б producingб theб listб ofб spectralб componentsб shownб atб theб bottom.

Series MM FM

In series MM FM the modulating sine wave M1 is itself modulated by M2. This creates a complicated
modulating wave with a potentially immense number of sinusoidal sideband components, depending on the
index of modulation. The instantaneous amplitude of series double-modulator FM is given in the following
equation, adapted from Schottstaedt (1977):

SMMFM
t
 = A ц≈ sin {C

t
 + [I1 ц≈ sin(M1

t
 + [I2 ц≈ sin(M2

t
)])]}.

The differences between the
parallel and serial equations
reflects the configuration of the
oscillators. In practice, I2
determines the number of
significant sidebands in the
modulating signal and I1
determines the number of
sidebands in the output signal.
Even small values of I1 and I2
create complex waveforms. The
ratio M1:C determines the
placement of the carrier's
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sidebands, each of which has sidebands of its own at intervals determined by M2:M1. Hence, each sideband
is modulated and is also a modulator.

Musical Applications of MM FM

Schottstaedt (1977) used double-modulator FM to simulate certain characteristics of piano tones. He set the
first modulator to approximately the carrier frequency, and the second modulator to approximately four times
the carrier frequency. According to Schottstaedt, if the carrier and the first modulator are exactly equal, the
purely harmonic result sounds artificial, like the sound of an electric (amplified tuning bar) piano. This need
for inharmonicity in piano tones agrees with the findings of acousticians (Blackham 1965; Backus 1977).

Schottstaedt made the amplitudes of the modulating indexes frequency-dependent. That is, as the carrier
frequency increases, the modulation index decreases. The result is a spectrum that is rich in the lower register
but becomes steadily simpler as the pitch rises. Since the length of decay of a piano tone also varies with
pitch (low tones decay longer), he used a pitch-dependent decay time.

Chowning and Schottstaedt also worked on the simulation of stringlike tones using triple-modulator FM,
where the C:M1:M2 ratio was 1:3:4, and the modulation indexes were frequency dependent (Schottstaedt
1977). Chowning also developed a deep bass voice using a combination MC FM and MM FM instrument.
See Chowning (1980, 1989) for more details on this instrument.

Feedback FM

Feedback FM is a widely used synthesis technique, due to Yamaha's patented application of the method in its
digital synthesizers (Tomisawa 1981). In this section we describe three types of feedback FM: one-oscillator
feedback, two-oscillator feedback, and three-oscillator indirect feedback.

Feedback FM solves certain problems associated with simple (nonfeedback) FM methods. When the
modulation index increases in simple FM, the amplitude of the partials vary unevenly, moving up and down
according to the Bessel functions (figure 6.19). This undulation in the amplitude of the partials lends an
unnatural "electronic sound" characteristic to the simple FM spectrum; it makes simulations of traditional
instruments more difficult.
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Figureб 6.19
Aб plotб ofб theб harmonicб spectrumб ofб FMб whenб theб frequencyб ofб Cб isб equalб toб that

ofб M,б forб valuesб ofб Iб rangingб fromб 0б toб 22б (afterб Mitsuhashiб 1982b).б Readб theб graphs
startingб fromб theб topб left,б thenб topб right,б thenб goб downб aб rowб toб theб left,б thenб right,

etc.б Noteб howб unevenб theб spectrumб is,б withб partialsб goingб upб andб thenб downб asб the
modulationб indexб changes.
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Figureб 6.19 (cont.)

Feedback FM makes the
spectrum more linear in its
evolution. Generally, in
feedback FM, as the
modulation index increases, the
number of partials and their
amplitude increases relatively
linearly.

Background:
Feedback Oscillators

A feedback oscillator instrument first appeared in Jean-Claude Risset's Introductory Catalog of Computer
Generated Sounds in 1969. Since this catalog was not publicly distributed, the technique first appeared in
public in an obscure paper with the cryptic title "Some idiosyncratic aspects of com-
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puter synthesized sound'' (Layzer 1971). In it, Arthur Layzer described work at Bell Telephone Laboratories
in developing a self-modulating oscillator whose output is fed back to its input. This work was a
collaboration with Risset, Max Mathews, and F. R. Moore. Moore implemented a feedback oscillator as a
unit generator in the Music V language. (Music V is described in Mathews et al. 1969.)

The essential difference between the feedback oscillators developed at Bell Laboratories and the Yamaha
feedback FM technique is that the former fed the signal back into the amplitude input, while the latter feeds
the signal back into the frequency or phase increment input. Hence the early feedback oscillators were
implementing a form of "feedback AM" rather than feedback FM.

One-oscillator Feedback

The basic idea of one-oscillator feedback FM is easy to describe. Figure 6.20 shows an oscillator that feeds
its output back into its frequency input through a multiplier and an adder. The adder computes the phase
index

Figureб 6.20
Feedbackб FMб instrument.б xб isб aб phase
incrementб toб aб sineб waveб lookupб table.

xб isб addedб withб aб signalб fedб backб from
theб output,б multipliedб aб feedbackб factorб β.
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for the sine table-lookup operation within the oscillator. At each sample period, a value x (the frequency
increment) is added to the existing phase. The value in the sine table at this new phase is the output signal sin
(y). In a synthesizer, x is usually obtained by pressing a key on a musical keyboard. This keystroke translates
into a large phase increment value for a high-pitched note or a small phase increment value for a low-pitched
note.

In feedback FM, the output signal sin(y) routes back to the adder after being multiplied by the feedback factor
β. The factor β acts as a kind of scaling function or "modulation index" for the feedback. With the feedback
loop the address of the next sample is x + [β ц≈ sin(y)].

Figure 6.21 plots the spectrum of a one-oscillator feedback FM instrument as β increases. Notice the increase
in the number of partials, and the regular, incremental differences in amplitude between the partials, all
contributing to a quasi-linear spectral buildup. With increasing modulation, the signal evolves from a sine
wave to a sawtooth wave in a continuous manner.

The equation for one-oscillator feedback FM can be characterized by reference to the Bessel functions
(Tomisawa 1981):

where J
n
(n) is a Bessel function of order n and n ц≈ β is the modulation index. The Bessel functions act in

different ways in feedback FM as opposed to simple FM. In simple FM, the modulation index I is common
for each Bessel component J

n
(I). This means that each Bessel function value J

n
(n) is represented by a height

at a position where the common modulation index crosses. Accordingly, as the modulation index in regular
FM increases, the spectral envelope assumes an undulating character. In feedback FM, the order n of the
Bessel function J

n
(n ц≈ β) is included in the modulation index, and the factor 2/(n ц≈ β) is multiplied as a

coefficient to the Bessel equation (Mitsuhashi 1982a).

In feedback FM, the modulation index n ц≈ β differs for each order n and increases approximately in the
manner of a monotone function (i.e., the increase is by a constant factor). The scaling coefficient 2/n ц≈ β
ensures that as the order n of partials increases, their amplitude decreases.

Two-oscillator Feedback

Another feedback FM patch takes the output of a feedback oscillator and uses it to modulate another
oscillator (figure 6.22). The multiplier M in the figure functions as the index of modulation control between
the two oscillators.
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Figureб 6.21
Spectrumб ofб aб one-oscillatorб feedbackб FMб instrumentб asб theб feedbackб factorб βб increases,
withб theб phaseб incrementб xб setб atб 200б Hz.б Theб horizontalб axisб showsб frequencyб plotted
fromб 0б toб 10б KHz.б Theб verticalб axisб showsб amplitudeб onб aб scaleб fromб 0б toб 60б dB.
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Figureб 6.22
Two-oscillatorб feedbackб FMб instrument.

Theб outputб ofб aб feedbackб FMб oscillator
modulatesб aб second,б nonfeedback

oscillator.
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Figureб 6.23
Spectrumб generatedб byб aб two-oscillatorб feedbackб FMб instrumentб asб theб feedback

factorб βб increasesб fromб 0.0982б toб 1.571.б Theб frequencyб valuesб forб x1б andб x2б areб both
setб atб 200б Hz,б andб theб modulationб indexб Mб isб setб toб theб constantб valueб 2.б The

horizontalб axisб showsб frequencyб plottedб fromб 0б toб 10б KHz.б Theб verticalб axisб shows
amplitudeб onб aб scaleб fromб 0б toб 60б dB.
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When M is in the range of 0.5 to 2, the spectrum has a monotonically decreasing tendency in which the
amplitude of the partials decreases as the number of partials increases (figure 6.23). When the feedback
parameter β is greater than 1, the overall amplitude of the high-order partials increases. This creates the effect
of a variable filter. It thus has a more strident and shrill sound. However, when M is set to 1 and x1 and x2 are
equal, this instrument generates the same spectrum as the single-oscillator feedback FM instrument shown in
figure 6.20.

When the ratio between x2 (the carrier) and x1 (the modulator) is 2:1, the modulation index M is 1, and β
varies between 0.09 and 1.571, the result is a continuous variation between a quasi-sine wave and a
quasi-square wave.

Three-oscillator Indirect Feedback

Another variation on feedback FM in a three-oscillator technique with indirect feedback, shown in figure
6.24. The feedback parameter is β1. Indirect feedback produces a complex form of modulation. When the
frequencies x1, x2, and x3 are noninteger multiples, nonpitched sounds are created. A beating chorus effect is
produced when these frequencies are very close to being in an integer relationship. According to sound
designer David Bristow (personal communication 1986) this instrument generates a rich spectrum, and when
the feedback is increased the energy tends to focus at the high end of the spectrum.

Phase Distortion

Phase distortion (PD) synthesis is a term invented by the Casio corporation to describe a simple modulation
technique developed for several of its digital synthesizers. PD synthesis uses a sine wave table-lookup
oscillator in which the rate of scanning through the oscillator varies over the cycle. The scanning interval
speeds up from 0 to π and then slows down from π to 2π. The overall frequency is constant, according to the
pitch of the note, but the output waveform is no longer a sine. Figure 6.25 illustrates the effect of the bent
(sped up and then slowed down) scanning function on the output waveform.

As the amount of speeding up and slowing down increases (bending the scanning function progressively), the
original sinusoidal waveform turns into a kind of triangle wave, and finally into a quasi-sawtooth waveform
that is rich in harmonics.
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Figureб 6.24
Three-oscillatorб indirectб feedbackб FMб instrument.б A

seriesб ofб threeб oscillatorsб modulateб eachб other.б Three
modulationб indexб factorsб β1,б β2,б andб β3б determineб the
amountб ofб modulation.б Theб globalб outputб isб fedб back

intoб theб firstб modulatingб oscillator.
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