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"Modulation" in electronic and computer music means that some aspect of one signal (the carrier) varies
according to an aspect of a second signal (the modulator). The familiar effects of tremolo (slow amplitude
variation) and vibrato (slow frequency variation) in traditional instruments and voices exemplify acoustic
modulation. The carrier in these cases is a pitched tone, and the modulator is a relatively slow-varying
function (less than 20 Hz). At the right moment and at the right speed, tremolo and vibrato charge both
electronic and acoustic tones with expressivity.

When the frequency of modulation rises into the audio bandwidth (above 20 Hz or so), audible modulation
products or sidebands begin to appear. These are new frequencies added to the spectrum of the carrier
(typically on either side of the carrier).

To achieve the same complexity of spectrum, modulation synthesis is more efficient in terms of parameter
data, memory requirements, and computation time than additive and subtractive synthesis. Modulation uses a
small number of oscillators (typically two to six), whereas additive and subtractive techniques need several
times this amount of computational power. Modulation is realized by a few table-lookup, multiplication, and
addition operations, depending on the type of modulation desired. Because there are fewer parameters than in
additive or subtractive techniques, musicians often find modulation techniques easier to manipulate.

By changing parameter values
over time, modulation
techniques easily produce
time-varying spectra. Carefully
regulated modulations generate
rich dynamic sounds that come
close to natural instrumental
tones. It is also possible to use
modulations in a nonimitative
way to venture into the domain
of unclassified synthetic sounds.

In this presentation of modulation, we use a minimum of mathematics combined with a liberal dose of
instrument diagrams or "patches." These diagrams depict synthesis instruments as a configuration of
elementary signal-processing unit generators. (See chapter 1 for an introduction to unit generators.)

The modulating signal can vary from a pure sinusoid at a fixed frequency to pure white noise containing all
frequencies. See chapter 8 for details on noise modulations.

Bipolar and Unipolar Signals

Two closely related synthesis methods are ring modulation and amplitude modulation (RM and AM,
respectively). In order to comprehend the difference between them, it is important to understand two types of
signals that
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Figure 6.1
Bipolar versus unipolar sine waves. (a) Bipolar sine varies
between 1 and 1. (b) Unipolar sine varies between 0 and 1.

they process: bipolar and unipolar. A bipolar signal is typical of most audio waveforms, in that it has both a
negative and a positive excursion around zero when we look at it in the time domain (figure 6.1a). By
contrast, the excursions of a unipolar signal remain within one-half of the full range of the system (figure
6.1b). One way to think of a unipolar signal is that it is a bipolar signal to which a constant has been added.
This constant shifts all the sample values to the range above zero. Another term for such a constant is direct
current (DC) offseta signal varying at a frequency of 0 Hz (i.e., not varying).

This distinction is important because the fundamental difference between RM and AM is that RM modulates
two bipolar signals, while AM modulates a bipolar signal with a unipolar signal. The next two sections cover
both methods in more detail.

Ring Modulation

We start our discussion with RM. In theory, ring modulation is a form of amplitude modulation (Black 1953).
In digital systems, RM is simply the multiplication of two bipolar audio signals by one another. That is, a
carrier signal C is multiplied by a modulator signal M. The basic signals C and M are generated from stored
waveforms, and one of them is usually a sine
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wave. The formula for determining the value of a simple ring-modulated signal RingMod at time t is a
straightforward multiplication:

RingMod = C M.
Figure 6.2 portrays two equivalent implementations of at RM instrument. In figure 6.2a it is assumed that the
carrier oscillator multiplies the value it reads from the wavetable lookup by the value it takes in from its
amplitude input. In figure 6.2b this multiplication is made more explicit. In both cases, the modulator and the
carrier vary between 1 and + 1, hence they are bipolar.

When the frequency of the modulator M is below 20 Hz or so, the effect of ring modulation is that the
amplitude of C varies at the frequency of Ma tremolo effect. But when the frequency of M is in the audible
range, the timbre of C changes. For each sinusoidal component in the carrier, the modulator contributes a pair
of sidebands to the final spectrum. Given two sine waves as input, RM generates a spectrum that contains
two sidebands. These sidebands are the sum and the difference of the frequencies C and M. Curiously, the
carrier frequency itself disappears. Furthermore, if C and M are in an integer ratio to one another, then the
sidebands generated by RM are harmonic; otherwise they are inharmonic.

The sidebands in signal multiplication derive from a standard trigonometric identity:
cos(C) cos(M)=0.5 [cos(C M)+ cos(C + M)].

Yet another way to understand ring modulation is to consider it as a case of convolution, as explained in
chapter 10.

To give an example of RM, assume that C is a 1000 Hz sine wave and M is a 400 Hz sine wave. As figure 6.3
shows, their RM spectrum contains a components at 1400 Hz (the sum of C and M) and 600 Hz (the
difference between C and M).

The phases of the output signal components are also the sum and difference of the phases of the two inputs. If
C and M are more complex signals than sine waves, or if their frequency changes in time, the resulting output
spectrum contains many sum and difference frequencies. A spectral plot would show many lines, indicating a
complicated spectrum.

Negative Frequencies

As figure 6.3b shows, when the modulating frequency is higher than the carrier frequency, negative
Jfrequencies occur, as in the case of C = 100 Hz and M = 400 Hz, since C + M =500, while C M= 300.
In spectral
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Figure 6.2

Two equivalent implementations of ring modulation or bipolar signal multiplication.

The box to the left of each oscillator is its waveform. The top left input of each

oscillator is the amplitude, and the top- right input is the frequency. (¢) RM by

implicit multiplication within the carrier oscillator. (b) RM by explicit multiplication

of the carrier and the modulator signals.
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Figure 6.3
Ring modulation spectra. (@) For a carrier of 1000 Hz and a
modulator of 400 Hz, the sum and difference frequencies are
1400 and 600 Hz, respectively. (b) For a carrier of 100 Hz and
a modulator of 400 Hz, the sum and difference frequencies
are 500 and 300 Hz, respectively.
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plots, a negative frequency can
be shown as a line extending
down from the x-axis. The
change in sign merely changes
the sign of the phase of the
signal. (When the sign changes,
the waveform flips over the zero
or x-axis.) Phase becomes
important when summing
components of identical
frequencies, since out-of-phase
components can attenuate or
cancel in-phase components.

Applications of RM

Typical musical use of RM
involves the modification of
sampled carrier signals (i.e., the
human voice, piano, etc.) by
sine wave modulators. Another
strategy is to create pure
synthetic sounds starting from
sine waves in either harmonic or
inharmonic ratios. This is the
approach taken by composer
James Dashow in his pieces
such as Sequence Symbols
(Dashow 1987).

Analog Ring Modulation and Frequency Shifting

Digital ring modulation relies on signal multiplication. In general, digital RM should always sound the same.
In contrast, various analog RM circuits have a different "character,” depending on the exact circuit and
components used. This is because implementations of analog RM approximate pure multiplication with a
four-diode circuit arranged in a "ring" configuration. Depending on the type of diodes (silicon or germanium)
these circuits introduce extraneous frequencies (Bode 1967, 1984; Stockhausen 1968; Duesenberry 1990;
Strange 1983; Wells 1981). For example, in an analog ring modulator based on silicon diodes, the diodes in
the circuit clip the carrier (turning it into a quasi-square wave) when it reaches the momentary level of the
modulator. This creates the effect of several sums and differences on odd harmonics of the carrier, of the
form

C+M,C M3C+M,3C M 5C+M,5C M,

Figure 6.4 compares the signals emitted by multiplying RM and diodeclipping RM. Analog ring modulation
was used extensively in the electronic music studios of the 1950s, 1960s, and 1970s. The German composer
Karlheinz Stockhausen was especially fond of ring modulation; he used it in a number of pieces composed in
the 1960s, including Kontakte, Mikrophonie I and II, Telemusik, Hymnen, Prozession, and Kurzwellen
(Stockhausen 1968, 1971Db).

A pioneer of musical ring modulation, the inventor Harald Bode also developed a variation on RM called
Jfrequency shifting (Bode 1967, 1984;
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Figure 6.4
Two forms of ring modulation. (a)
Multiplication RM. (b) Diodeclipping or
"chopper" RM.

Bode and Moog 1972). A frequency shifter or Klangumwandler has separate outputs for the sum and
difference frequencies. Another term for this method is single-sideband modulation (Oppenheim and Willsky
1983).

Amplitude Modulation

Amplitude modulation is one of the oldest modulation techniques (Black 1953) and has been used
extensively in analog electronic music. As in RM, the amplitude of a carrier wave varies in accordance with a
modulator wave. The difference between the two techniques is that in AM the modulator is unipolar (the
entire waveform is above zero).

Perhaps the most mundane example of infraaudio AM occurs when superposing an envelope onto a sine
wave. The envelope, which is unipolar since it varies between 0 and 1, acts as a modulator. The sine wave,
which is bipolar since it varies between 1 and + 1, acts as a carrier. To apply an envelope to a signal is to
multiply the two waveforms C and M:

AmpMod =C M
where AmpMod. the value of an amplitude-modulated signal at time 7. Figure 6.5 depicts the result.

Like RM, AM generates a pair of sidebands for every sinusoidal component in the carrier and the modulator.
The sidebands are separated from the carrier by a distance corresponding to the inverse of the period of the
modulator. The sonic difference between RM and AM is that the AM spectrum contains the carrier frequency
as well (figure 6.6). The amplitude of the two
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Figure 6.5
Applying an envelope to a signal is a simple
case of infra-audio AM. The sine wave signal
in (a) is multiplied by the envelope signal in (b)
to produce the enveloped signal in (c).

Figure 6.6
Spectrum produced by AM of a 1KHz sine wave by a 400
Hz sine wave. The two sidebands are at sum and difference
frequencies around the carrier frequency. The amplitude of
the each of the sidebands is index/2.
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Figure 6.7
Time-domain view of audio frequency AM. The 1 KHz sine wave
signal in (a) is modulated by the 40 Hz sine wave signal in (b) to
produced the amplitude modulated signal in (c).

sidebands increases in proportion to the amount of modulation, but never exceeds half the level of the carrier.

Figure 6.7 shows a time-domain view of AM created by the modulation of two sine wave signals in the audio
band.

AM Instruments

To implement classic AM one restricts the modulator to a unipolar signalthe positive range between 0 and 1.
Figure 6.8a shows a simple instrument for AM where the modulator is a unipolar signal.

Modulation Index

A slightly more complicated instrument is needed to control the amount of modulation and the overall
amplitude envelope. Figure 6.8b depicts an AM instrument that controls the amount of modulation with an
envelope (top left of figure). This envelope functions as a modulation index, in the parlance of modulation
theory (more on this later). The instrument scales a bipolar modulation signal into a unipolar signal varying
between 0 and 1, and then adds this to an overall amplitude envelope over the duration of a sound event. The
following equation describes the resulting AM waveform:

< previ page_223 next page >

237



cover

< _previ e page_224 next page >
Page 224
Figure 6.8

Two implementations of AM. (a) A simple
instrument for AM where the modulating
signal is assumed to be unipolar. (b)) A more
complicated instrument for AM with controls
for the amount of modulation and the overall
amplitude over the duration of the note event.
The box to the left of each oscillator is its
waveform. In the case of the envelope
oscillators (denoted by ENV OSC), the
frequency period is 1/note_duration. This
means that they read through their wavetable
once over the duration of a note event. The
Positive scaler module ensures that the
modulation input to the adder varies
between 0 and 0.5.

AmpMod = A, x cos(C) + (I x A.)f2 x cos(C + M)
+ (I x A)/2 x cos(C — M)

where AmpMod is the amplitude-modulated signal, AF is the amplitude of the carrier, / is the modulation
index, C is the carrier frequency, and M is the modulator frequency.

Frequency Modulation

Frequency modulation (FM) is a very well known digital synthesis method, due to its adoption by the
Yamaha corporation. However, FM is not one technique, but a family of methods that share the common
property of wavetable lookup according to a nonlinear oscillating function.
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